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Abstract—Wearable technology has played a crucial role in
computer-aided diagnosis and long-term monitoring of Parkin-
son’s disease (PD). How to efficiently and accurately assess the
severity of Parkinson’s disease using wearable devices remains
the essential problem. However, in the real free-living environ-
ment, we have encountered two issues: weak annotation and
class imbalance, which could potentially impede the automatic
assessment of Parkinson’s disease. To overcome these challenges,
we propose a novel Parkinson’s disease assessment framework
in free-living environment. Specifically, clustering methods are
used to learn latent categories from the same activities, and use
Latent Dirichlet allocation (LDA) topic models to capture latent
features of multiple activities. Then, to mitigate the impact of
data imbalance, we augment bag-level data while retaining key
instance prototypes. The new framework is applied to a PD
dataset collected by wearable sensors in the wild. It achieves an
impressive 73.49% accuracy in the fine-grained (normal, mild,
moderate, severe) classification of PD severity based on hand
movements. Overall, this study contributes to more accurate PD
self-diagnosis in the wild, enabling remote guidance for drug
intervention from doctors.

Index Terms—Data Augmentation, Parkinson’s disease, Wear-
able sensor, Weak annotation.

I. INTRODUCTION

Parkinson’s disease (PD) has been ranked as the sec-

ond most common disease worldwide, affecting a significant

portion of the elderly population [1]. It is estimated that

by 2030, approximately 9 million people in the ten most

populous countries will suffer from this disease [2]. PD is

characterized by a severe loss of dopamine in the forebrain,

resulting in motor symptoms such as tremors, muscle stiffness,

bradykinesia, postural instability, as well as non-motor symp-

toms including hyposmia, sleep disturbances, and autonomic

dysfunction [3]. To effectively assess these motor symptoms,

rating scales have been widely adopted, such as the MDS-

Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) [4].

However, these assessments typically occur in clinical settings

with infrequent annual visits, and the UPDRS evaluation is

time-consuming, requiring at least 30 minutes and specialized

training [5]. These factors contribute to the challenge of

monitoring Parkinson’s disease effectively. Therefore, there is

a need for convenient and objective PD assessment tools to

better assist patients.
With the popularization of IoT devices and the advancement

of machine learning technology [6]–[8], objective assessment

of PD symptom severity through wearable inertial sensors has

seen a substantial amount of research. Previous studies [9]

employed inertial sensors to precisely measure PD symptoms

in a controlled laboratory environment. These research demon-

strates the effectiveness of wearable technology in monitoring

PD symptoms, providing valuable insights for doctors to gain

a better understanding of the patient’s PD symptom.
Although wearable technology has demonstrated significant

potential in monitoring PD symptoms, it is still very difficult to

use wearable devices to assess PD in a free-living environment.

In real situations, we found the following two problems:

• Weak Annotation: In real cases, it is very time-consuming

to obtain detailed symptom annotations [10]. Expert

raters usually score the PD stage of the patient’s motor

function for a long time, but arbitrary segmentation

into fixed-length windows may not reflect disease-related

features [11] (merely with longtime annotation). This is
generally considered a weakly supervised problem,
which inspired us to develop a assessment framework
in the weakly supervised setting.

• Class Imbalance: most patients will be concentrated in

mild Parkinson’s disease, and the proportion of severe

patients will be small (in the data set we collected, severe
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patients are usually only 1/4 of mild patients). This leads

to class imbalance problem. At the same time, there

is often high variability in motor performance between

different PD patients at the same stage. This makes us
need to find effective ways to make full use of data
to solve this problem.

The mentioned factors pose challenges in assessing the

stage of PD. Building upon these challenges, we propose

a novel weakly supervised framework for PD assessment,

aiming at solving the problem of PD diagnosis in free-living

environments under weakly-annotated settings and with data

imbalance.

Our method is divided into two parts, one is PD learning

framework under weak supervision: We first use fixed-window

segments to extract features from the patient’s different ac-

tivities sensor signal data, Then k-means clustering is used

to cluster the different segments of the same activity of all

patients. Latent Dirichlet Allocation (LDA) topic models to

generate global features from these clustering labels in order

to discover the hidden topic information between different

activities of PD patients. These two features are then fused

as a re-representation of the PD patient features. Then we use

the data augmentation method, first find similar patient pairs

through similarity comparison to mix, At the same time, by

disrupting the order of different segments in the bag to weaken

the relationship between the position and time of the segments,

more diverse samples are generated, and use the generated

pseudo data for training. The intuition behind our method

is that the fine-grained features of short-term fixed windows

may not reflect the overall disease stage of the patient, we

hope to discover the implicit association information between

different activities of the patient through the unsupervised

topic model. Finally, we performed a PD stage classification

test on the real PD free-living environment dataset of 83

subjects, and achieved an accuracy rate of 73.49%(normal,

mild, moderate, severe), 11% higher results than segment-

based PD stage classification. Proving the effectiveness of our

method. Specifically, our main contributions are as follows:

• We propose a PD stage assessment framework under the

weak annotation setting, which classifies by combining

local features of multiple segments and global topic

features of multiple activities.

• We propose a simple yet effective data augmentation

method to generate more data to enrich the original data

and improve the classification performance of minority

classes.

• Validation and evaluation on a dataset of 83 people in a

real free-living environment demonstrates the effective-

ness of the method.

The rest of the paper is organized as follows. Related works are

discussed in section II. Parkinson’s disease stage assessment

framework is presented in section III, evaluated and results

presented in section IV. Section V concludes this paper.

II. RELATE WORK

We will review related work from three aspects: 1)Wear-

able technology PD severity assessment. 2)Weakly supervised

learning. 3)Time series data augmentation.

A. Wearable technology for PD severity assesment

There have been considerable studies on the monitoring

and management of Parkinson’s disease motor symptoms

through wearable technology, and it has been proven to be

as effective as clinical scores [12]. Previous research [13],

[14], Monitoring single PD symptoms via wearable sensors.

However, most studies only focus on a single symptons. A

reason is that the evaluation of PD staging often requires

comprehensive evaluation of multiple PD motor symptoms,

which brings difficulties to this work. At the same time, most

of their work did not consider the problem of weak annotation.

B. Weakly supervised learning

In practical situations, it is very difficult for PD patients

to accurately record the onset time of each symptom, but PD

stage labels based on long-term observation are available. This

is often considered a weakly supervised learning setting [15].

To address this issue, there are currently many studies using

multiple-instance learning(MIL) methods. Such as instance-

level methods [16] and bag-level methods [17]. At present,

MIL has been widely used in various fields. But as far as I

know, MIL is less considered in the field of human activity

recognition, and there are only a few studies [18], especially

in the evaluation of Parkinson’s disease. Therefore, in this

study, we propose a MIL-based framework for PD diagnosis

to address the weak annotation problem of real situations.

C. Time series data augmentation

Data augmentation is an effective method to increase the

number and diversity of samples under limited data. There

have been many studies on data augmentation, especially in

the field of medical data, because medical data collection is

very expensive and often has severe class imbalance.

One of the methods is to generate more diverse samples

through small transformations in the original signal to enrich

the feature expression, such as [19], They defined a series

of data augmentation methods for wearable sensor signals,

including Permutation, magnitude-warping, cropping, jittering,

Rotation. And it has improved in the three status classifica-

tions of PD bradykinesia, OFF, and dyskinesia. However, this

method may not be suitable for the evaluation of PD stage,

because the magnitude-warping, jittering and other methods

may change the severity of patients’ symptoms and do not

consider the differences between patients. Other data augmen-

tation work such as [20]. These methods are all based on

instance-level fixed-window data augmentation, which loses

the holistic information of multiple activities and ignores the

differences among subjects.
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III. METHODOLOGY

A. Framework overview

The comprehensive framework is visually represented in

Figure 2. This framework is organized into five distinct compo-

nents. The initial part encompasses data preprocessing, sliding

window segmentation. The second component extracted the

features from the original signal. In the third part, these

segments features will be used for k-means clustering and

aggregation, We then fit the distribution of these cluster labels

through the LDA model to generate new global features. In

the fourth part, we use data augmentation methods to generate

more data and alleviate the negative effects of data imbalance.

The final segment pertains to the training and testing phase,

where machine learning models are trained and assessed using

these features. We define the research problem as a four-class

classification problem. Input the features x of the participants’

activities and output the patient’s PD stage y (Healthy, mild,

moderate, and severe PD). This approach aims to develop a

machine learning model which is capable of evaluating the

disease severity of PD patients. Detailed descriptions of each

step will follow in the subsequent sections.

B. Data collection

The data for this research study were collected by our team

at the hospital from January 15, 2021, to July 30, 2022. A total

of 70 PD patients and 15 healthy volunteers participated in the

study. In this study, all of the participants signed the informed.

During the activities, all participants wore Shimmer3 IMUs on

their left wrist, right wrist, left ankle, right ankle, and waist to

collect acceleration and gyroscope signal data. To minimize

the burden on patients, in subsequent experiments, we only

utilized data from the right wrist sensor. And only uses part

of the activities.

The Shimmer3 IMU is connected to the computer through

wireless Bluetooth. On the computer, we use the Consen-

sysPRO software to collect the signal data at a high sampling

frequency of 200HZ. The participant will perform 12 kinds of

activities, with a 1-minute rest between each activity. Before

the experiment begins, the researchers will instruct the PD

patients to complete the requirements of the activity. While

after the experiment began, there is no any guidance or

interference from the investigator. Videos will be recorded

during the collection and all the data will be scored according

to the H-Y scale by a neurologist. The label is individual-

level based on the patient’s performance in multiple activities.

Table I and Figure 1 present the activities performed in the

experimental setup. After excluding abnormal subjects, 83

subjects were finally used in the study.

C. Data Preprocessing and Segmentation

We first use a 4th-order Butterworth filter with a bandpass

range of 0.3Hz-20Hz filter out the gravity component. Z-score

normalization will be applied to the signal, after which the

data will be sliced at 300 data points (1.5 seconds) with 50%

Fig. 1. Overview activity: (a)Finger taps (b)Clench and open alternately
(c)Rapid alternating movements of hands (d)Hand rotation-right/left (e)Finger
to nose-left/right (f)Standing with arms hold (h)Walk back and forth (i)Arising
from chair (j)Drinking water (k)Picking things

TABLE I
DEMOGRAPHIC DATA OF STUDY POPULATION. (MEAN AND STD.)

Healthy PD Total
Num.patient 15 70 85
Age 23.56(2.24) 67.57(7.84) 49.78(20,47)
Weight 62.42(.5.52) 58.51(9.60) 62.48(10.24)
Height 171.66(11.39) 160.51(7.73) 169.25(9.05)

UPDRS Level Healthy:15

Mild:41

Moderate:17

Severe::12

Healthy:15

Mild:41

Moderate:17

Severe::12

Gender Ratio Male:13
Female:2

Male:37
Female:33

Male:50
Female:35

Num.instance 1618 7821 9439

overlap. Finally, We will compute time and frequency domain-

related features (standard deviation, variance, skewness, kur-

tosis, rms, energy, median, range, correlation......).

D. Feature extract and fusion

Clustering to create documents: As shown in Fig 2,

the multiple activity signals are divided into segments,

i11, i
2
1, i

3
1, i

4
1......i12, i

2
2, i

3
2, i

4
2, i

n
m m represents the m-th activity,

n represents the n-th window segment of the activity. i
represents the feature set of the segment. Subsequently, the

feature set of the same activity segment of different patients

will be clustered using k-means, and the clustered labels will

be used as words to form documents:

Documentp =
[
F 1
1 , F

1
1 . . . . . . .F b

a

]
(1)

Fa stands for k-means clustering label, b stands for the b-th
activity, and p stands for the p-th subject. Through this method,

we aggregate the words of multiple activities of the patient to

generate a document, and then use the topic model to generate

a global feature.

LDA topic model generate global features: The document-

word matrix is the input to LDA, and LDA outputs the

document-topic distribution as global features. The detailed

calculation process can be found in [21]. The advantage of this
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Fig. 2. Overview of the framework: The original wearable device signal is decomposed into various segments via slicing and feature extraction, and these
segments are clustered to generate cluster labels. The document will be composed of multiple active clustering labels and the topic probability distribution
will be generated by the topic model as the extracted global features for classification. We then used the package’s data augmentation method to generate
more samples.

Fig. 3. Feature vector

is that each subject’s different activities will generate a topic

distribution feature, which is generated based on the global

information of multiple activities, with more information and

better feature expression. Fig 3 shows the final feature vector.

E. Data Augmentation

Data augmentation has two purposes, one is to improve the

prediction accuracy of the minority class to solve the problem

of class imbalance, and the second is to reduce the variability

between patients and improve the robustness of the model.

Fig 4 shows how the data augmentation method works. First,

we assemble the instance clustering labels into vectors A and

B according to the original chronological order. Then, we

calculate the distances between different patients using the

formula 2 and select pairs with close distances. Afterward,

we use two methods to mix the samples: a) We re-randomly

mix similar sample pairs to generate new samples. These Bag

pairs are derived from the same PD stage patients, so the labels

remain unchanged, resulting in a greater diversity of samples

and alleviating intra-class differences. b) We shuffle the order

of instances within each bag. The purpose of this is to handle

the uncertainty of when patients develop symptoms. Through

shuffling, we generate samples that are independent of time.

Distance(H) =

n∑

i=1

(Ai �= Bi) (2)
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Fig. 4. Bag-level augmentation method

(a) (b)

Fig. 5. Data distribution after PCA dimension reduction. Each point represents
the activity signal characteristics of the subject in the 1.5s window. (a)Data
distribution of different PD severity levels. (b)Individual differences in the
same category.

IV. RESULTS OF PROPOSED FRAMEWORK

A. Experimental setup and evaluation methods

We selected different basic machine learning algorithms

to verify our proposed framework, including KNN, SVM,

XGBOOST, Lightgbm, and used the leave-one-out cross-

validation method in our 83-person data set. Finally, we used

Accuracy(ACC), precision(P), recall(R), F1-score as evalua-

tion indicators.

B. Weak annotation

Figure 5(a) shows the instance distribution of 5 subjects in

different PD stages. It can be inferred that not all instances of

PD patients are in the ON state, and there may be instances

similar to level 0, but the instance-level labels are difficult

to obtain. This leads to the emergence of the weak labeling

problem.

Figure 5(b) shows four subjects in PD stage 4. Although

they are all performing the same activity and labeled as PD

stage 4, the instance distributions of different subjects show

differences due to the Subject 1 developed tremors while

subject 4 performed bradykinesia during the performance of

the activity. This shows that different subjects of the same

category will produce individual differences, resulting in more

difficult classification, so more abundant data is needed to

enhance sample diversity.

TABLE II
DATA AUGMENTAION RESULT

Method Accuracy Precision Recall
No augmentation 68.67 68.23 68.67
Rotation 65.06 64.86 65.06
Scaling 66.27 66.07 66.27
Random Oversample 71.08 70.55 71.08
SMOTE 71.08 70.72 71.08
Propose Framework 73.49 73.77 73.49

C. Parameter setting

In order to find the optimal number of cluster centers to

determine the type of words, we set the number of cluster

centers k ∈ [4,5,6,7,8,9,10,11,12,13,14,15,16,17]. At the same

time, another parameter, the number of topics in the LDA

model, is also an important hyperparameter, because different

numbers of topics will affect the interpretability of the LDA

model on documents and feature extraction. We set the number

of topics t ∈ [4,5,6,7,8,9,10] to verify the impact of different

numbers of topics on the model. We use accuracy to search

for optimal parameters and finally use the parameter setting

of cluster center k=8 topic number t=4 to achieve an accuracy

68.67%.

D. Results

Experiment 1 :In this experiment, we use 4 machine

learning models to report the classification results of 4 stages

of PD based on multiple patient activities. Fig 6 shows the

performance of our framework and the baseline based on in-

stance recognition in terms of precision, recall, and accuracy. It

can be seen that XGB shows better classification performance,

and in our proposed framework, LDA features are added

After that, it is obviously improved(The highest accuracy rate

reaches 68.67%, which is 12% higher than the instance-based

method and 6% higher than the MIL method without adding

LDA features), which proves the effectiveness of our proposed

framework, and in the follow-up data augmentation research,

we choose XGB as our classification model to compare with

other sample generation methods.

Experiment 2 :Table II shows the Xgboost classification

performance after adding data augmentation components in

our framework. At the same time, we compared random

oversampling, smote, rotation and scaling. It can be seen

that among all methods, the similar pair hybrid method we

use achieves the best classification performance. Reached

73.49%, which is 4.82% higher than before data augmentation,

and the average Recall is improved, which shows that our

proposed method can increase the diversity of data very well,

keep the features unchanged, and improve the classification

performance of minority classes.

V. CONCLUSION

In this work, we attempt to assess Parkinson’s disease stages

using a single wearable sensor worn on the right hand. And it

was verified on the real 83-person PD dataset, but we found

two problems: weak labeling and data imbalance. In order to
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Fig. 6. Performance results of real PD dataset

solve these two problems, we proposed a PD stage evaluation

framework represented by symbols, and used The topic model

was developed to further obtain better feature expression. At

the same time, We proposed a similarity-based pattern mixing

method and the final result achieved an accuracy rate of

73.49%, which proves that the framework can overcome the

influence of weak annotations and enrich data diversity. In

future work, we will use more sensor data and more advanced

methods to improve our classification accuracy. Overall, this

study contributes to more accurate PD self-diagnosis in the

wild, enabling remote guidance for drug intervention from

doctors.
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